中文  |  ENGLISH

NREL scientists advance solar thermo-chemical hydrogen (STCH) production

2022.05.11     From: helioscsp

Perovskite materials may hold the potential to play an important role in a process to produce hydrogen in a renewable manner, according to an analysis from scientists at the National Renewable Energy Laboratory (NREL).


Hydrogen has emerged as an important carrier to store energy generated by renewable resources, as a substitute for fossil fuels used for transportation, in the production of ammonia, and for other industrial applications. Key to the successful use of hydrogen as a fuel is being able to meet the Department of Energy’s Hydrogen Energy Earthshot—a recently announced goal to cut the cost of clean hydrogen by 80% to $1 per kilogram in a decade.



Source: Green Car Congress 06 May 2022


The NREL scientists analyzed solar thermochemical hydrogen (STCH) production, which can be potentially more energy-efficient than producing hydrogen via the commonly used electrolysis method. Electrolysis needs electricity to split water into hydrogen and oxygen. STCH relies on a two-step chemical process in which metal oxides are exposed to temperatures greater than 1,400 degrees Celsius and then re-oxidized with steam at lower temperatures to produce hydrogen.

 


It’s certainly a very challenging field, and it has a lot of research questions still unanswered, mainly on the materials perspective.

—Zhiwen Ma, a senior engineer at NREL

 

Ma is the lead author of a new paper, “System and Technoeconomic Analysis of Solar Thermochemical Hydrogen Production,” which appears in the journal Renewable Energy. His co-authors, all from NREL, are Patrick Davenport and Genevieve Saur.


The paper complements ongoing materials discovery research by looking at the system-level design and techno-economic analysis for integrating possible materials into a solar-fuel platform and supporting the Department of Energy’s HydroGEN program. The material discovery in the HydroGEN program involved machine learning, defect calculations, and experimental work to develop new perovskite materials. The researchers need to identify perovskites capable of handling the high temperatures required while hitting performance targets.

A conceptual solar thermochemical hydrogen production platform. Illustration by Patrick Davenport, NREL




This work shows part of a portfolio of techno-economic analysis focused on hydrogen production pathways each with its own advantages and disadvantages. Electrolysis, for example, is commercially available and the electricity required can come from photovoltaics (PV). The PV cells used, however, only capture a section of the solar spectrum. STCH uses the entire spectrum. The concentrated solar thermal power enables STCH to create the chemical reaction.


Active research to identify the best materials for the STCH process is critical to the success of this method for hydrogen production, the scientists noted.


This research is funded by the Department of Energy’s Hydrogen and Fuel Cell Technologies Office.


Resources

  • Zhiwen Ma, Patrick Davenport, Genevieve Saur (2022) “System and technoeconomic analysis of solar thermochemical hydrogen production,” Renewable Energy, Volume 190, Pages 294-308 doi: 10.1016/j.renene.2022.03.108


Leave your thoughts here

Reports(Member Only)

See more+
  • Dubai 950MW NOOR Energy 1 CSP+PV Project (Member Only)

    The $4.4 billion Noor Energy 1 solar thermal project will be the world’s largest CSP plant and includes a 100 MW CSP tower plant, three 200 MW parabolic trough CSP systems, 250 MW of PV capacity and 15 hours of molten salt CSP storage capacity.

  • China Large-scale CSP Projects Update (Member Only)

    Updating--Jan., 2020 Edition24 pagesPart 1: Background and Fact Sheet (P1-11) · Implementation and adjustment of 1st batch of CSP demonstrations· FiT policy update and prediction· Sum-up on the 20 projects technology, location, ownership and key participants Part 2: Milestones of Ch

  • Suppliers List of China Key CSP Projects (Updating) (Member Only)

    13 key concentrated solar power projects in China undergoing:Shouhang Dunhuang 100MW Molten Salt Parabolic Trough ProjectRoyal Tech Yumen 50MW Parabolic Trough ProjectDCTC Dunhuang 50MW MS CLFR ProjectRayspower Yumen 50MW Trough ProjectCNNC Royal Tech Urad 100MW Parabolic Trough ProjectSupcon Delingha 50MW Molten Salt Tower ProjectLuNeng Haixi 50 MW Solar Thermal Tower Plant ProjectPower C

  • Construction and Operation of SUPCON SOLAR Delingha 50MW Tower CSP Project (Member Only)

    40 pages in totalCompany Profile (P3-4)Construction of Delingha 50MW Tower CSP Project (P6-17)Operation of Delingha 50MW Tower CSP Project (P18-30)Issues during Commissioning and Operation (P31-39)

Upcoming Events

See more+

Project Updates

See more+

CONTACT US

Tex:

Email:csp@cspfocus.cn


备案/许可证编号为:沪ICP备17051021号

Wechat public platform

Follow CSP Focus for more news