中文  |  ENGLISH

Home > Market > MENA > Here

Saudi Arabia could start using concentrated solar power in district cooling

2018.11.20     From: helioscsp.com

The ongoing development of solar power in Saudi Arabia as an alternative source of energy could gain wide adoption in its growing district cooling industry.


Two researchers, Guiseppe Franchini and Antonio Perdichizzi, from the University of Bergamo have proposed an alternative cooling technology; using a thermal form of solar energy to provide solar district cooling in the Kingdom.


Their study of the economics of solar district cooling was published at Energy Conversion and Management, in Performance prediction of a solar district cooling system in Riyadh, Saudi Arabia – a case study.


"So this technology could be interesting also for other locations like in the Mediterranean. In Italy for example, cooling loads are increasing more and more with the higher temperatures in the summer. So this technology can have a good application also in other countries," said Franchini.


Early in their investigation, Perdichizzi and Franchini determined that solutions based only on PV exhibit some weakness points: the main critical issue is related to the electric storage by batteries for large size systems. So their focus became solar thermal technologies.


"Our investigation was comparing solar district cooling from parabolic trough collectors or solar cooling from evacuated tube collectors," said Perdichizzi.


"One is based on single stage absorption chiller driven by evacuated tube collectors operating at medium temperatures. The second one is based on two stage absorption chillers driven by parabolic troughs operating at a higher temperature around 170°C."


Since an absorption chiller does not require very high temperatures for cooling (about 170°C for double-stage and 100°C for single-stage), the obvious choice would seem to be the typical solar thermal rooftop collectors, such as is popularly used to heat swimming pools or to make hot water in homes at comparatively low temperatures.


Yet after comparing the two, they found that a parabolic trough solar field would be the most economical.


"Our proposed solution is a solar district cooling system for new settlements in Saudi Arabia. This concept combines solar cooling and district cooling," said Franchini.


The study has implications for the climate. With one of the world's highest per capita energy consumption rates, cooling accounts for more than 70% of electricity use in Saudi Arabia's year-round hot climate.


But the Kingdom still produces this electricity almost entirely using fossil fuels, despite its abundant solar resource.

Leave your thoughts here

Free Reports

See more+
  • Dubai 950MW NOOR Energy 1 CSP+PV Project

    The $4.4 billion Noor Energy 1 solar thermal project will be the world’s largest CSP plant and includes a 100 MW CSP tower plant, three 200 MW parabolic trough CSP systems, 250 MW of PV capacity and 15 hours of molten salt CSP storage capacity.

  • China Large-scale CSP Projects Update

    Updating--Jan., 2020 Edition24 pagesPart 1: Background and Fact Sheet (P1-11) · Implementation and adjustment of 1st batch of CSP demonstrations· FiT policy update and prediction· Sum-up on the 20 projects technology, location, ownership and key participants Part 2: Milestones of Ch

  • Suppliers List of China Key CSP Projects (Updating)

    13 key concentrated solar power projects in China undergoing:Shouhang Dunhuang 100MW Molten Salt Parabolic Trough ProjectRoyal Tech Yumen 50MW Parabolic Trough ProjectDCTC Dunhuang 50MW MS CLFR ProjectRayspower Yumen 50MW Trough ProjectCNNC Royal Tech Urad 100MW Parabolic Trough ProjectSupcon Delingha 50MW Molten Salt Tower ProjectLuNeng Haixi 50 MW Solar Thermal Tower Plant ProjectPower C

  • Construction and Operation of SUPCON SOLAR Delingha 50MW Tower CSP Project

    40 pages in totalCompany Profile (P3-4)Construction of Delingha 50MW Tower CSP Project (P6-17)Operation of Delingha 50MW Tower CSP Project (P18-30)Issues during Commissioning and Operation (P31-39)

Upcoming Events

See more+

Project Updates

See more+

CONTACT US

Tex:+86-21-6111 0177

Email:csp@cspfocus.cn


备案/许可证编号为:沪ICP备17051021号

Wechat public platform

Follow CSP Focus for more news